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Monte Carlo techniques have been used to calculate neutral gas distributions in tokamaks. 
The algorithm uses track length estimators, suppression of absorption, and splitting with 
Russian roulette to reduce the variance, so that the algorithm is economic. The resultant 
package is small in memory requirements and relatively fast (-15 seconds of PDP-10 KI 
time per neutral density profile). The tokamak is modeled as an infinite cylinder, and the 
plasma parameters are specified as a function of the radial coordinate of the cylinder. 
The effects of wall reflection and sputtering yields can be easily computed within the model. 
The algorithm has been incorporated in a one-dimensional tokamak transport code. The 
code has also been used to predict the energy spectra of charge-exchange neutrals which 
form the basis for measurements of ion temperatures in tokamaks. 

1. INTRODUCTION 

The interaction between the plasma and recycling neutral gas is an important 
feature of any tokamak model. For example, the presence of a neutral species in a 
plasma influences both the particle and energy balance while energetic neutrals pro- 
duced in successive charge exchange collisions can carry energy directly to the walls 
and sputter heavy impurity atoms back into the discharge. Further, it has been 
suggested [I] that the reflection of escaping particles as high-energy neutrals is an 
important mechanism in producing high-density tokamak discharges by gas injection. 

To study such effects in detail, an accurate treatment of the neutral gas is required. 
Here, we describe a Monte Carlo approach to the problem. The model is implemented 
in a code which provides a flexible and convenient framework for developing 
numerous physics calculations dependent on the neutral population in a plasma. 
The package itself is sufficiently fast and compact to be incorporated, for example, 
as part of a one-dimensional radial plasma transport code. 

2. MONTE CARLO METHOD 

Neutral gas transport is, in principle, similar to the problem of neutral transport; 
in fact, it has been advocated [2] that neutron codes should be adapted to calculate 
neutral behavior. However, neutral atoms traversing a plasma are subject only to 
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ionization and charge exchange for which the cross sections are smooth functions 
free from troublesome resonances. The Monte Carlo technique is then much more 
straightforward. The computational scheme described here will determine, with 
adequate statistical accuracy, the neutral density and energy distributions within a 
plasma. The method works satisfactorily with relatively few simulated particles 
(typically s103) even in situations involving deep penetration to the center (e.g., 
where the neutral density is attenuated by factors ~10~-10~). 

2.1. Analog Method 

From an elementary argument, it is easily shown that the 
neutral particle traverses between collisions is given [3] by 

distance 1, which a 

(2.10) 

where h is the local mean free path and 5 is a random number in the range 0 < 4 < 1. 
The integral is evaluated along the directed straight line from one collision to the next. 
Since a plasma is an inhomogeneous medium, we invert Eq. (2.10) by dividing the 
plasma volume into zones in which the density and temperature are piecewise homo- 
geneous. The distance to a collision is then obtained by calculating the lengths 
Sl 5 $2 2 s3 ,"', s,., of the segments which lie in each zone. If 

then the trajectory ends in the nth zone a distance 

(2.11) 

(2.12) 

beyond the entrance to the nth region. 
Since the path of motion of a neutral atom is a straight line and the velocity is 

constant between collisions, particle tracking is particularly convenient in a Cartesian 
coordinate system. Thus, the distance sj in Eq. (2.12) can be obtained from the 
intersections of the straight line 

r = r0 + v(t - t,) (2.13) 

and the equationf& y, z) = 0 of the jth boundary surface. Here r(t) is the particle 
position at time t, r, the initial position (at t = to), and v is the particle velocity. In 
our present model, we consider a cylindrical plasma with concentric circular surfaces, 
The computation of the sj’s is then simply obtained from the solution of the equations: 

~2 + ya = aj2 (2.14a) 
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and 
x - x0 Y - Yo 2 - zo =--- =--t-t 

VX VY 0, 
0 

where aj is the radius of thejth surface. 
The tracking of a particle is illustrated in Fig. 1. A particle is launched from the edge 

of the plasma at (a, 0.0) and tracked to the first collision. There it is scattered and is 
followed through successive collisions until it escapes or is ionized. 

FIG. 1. Particle tracking geometry. 

It is worth noting that the dimension along the z axis enters the problem only in 
the computation of v as ) v 1 = (vZ2 + vy2 + vZ2)1~2. 

2.2 Scoring 

The neutral density in any zone j is obtained from a path length estimator [4], 
which can be written in the form 

(2.20) 

Here, r is the influx of neutrals across the plasma boundary, A is the total surface 
area of the plasma, V, is the volume of zone j, N is the number of sample particles, 
wi is the statistical weight of particle i and tif is the time taken for particle i to traverse 
zone j. We also calculate the mean neutral temperature in zone j which is defined as 

(2.21) 
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The factor of 2/3 converts the mean energy to a “temperature” for comparison with 
the local ion temperature. 

The path length estimator is an important part of the algorithm since a particle 
contributes information in each region through which it passes, rather than only at 
the point of collision. 

2.3 Suppression of Absorption 

In the simplest analog scheme, a particle launched at the boundary is tracked 
using Eqs. (2.10~(2.14) until a collision point is found. The collision can either be 
an ionization or a charge exchange event. The probabilities for these two events are 
sampled by choosing a random number e uniformly distributed between 0 and 1. 
The probability of ionization is pion = (l/Xron)/(l/hcX + l/hron). If 5 < pion , the par- 
ticle is considered to be ionized and is lost. A new particle is launched at the boundary 
and the whole process is repeated again. If [ 3 pion , the particle is considered to 
have undergone a charge exchange, and a new particle is launched from the point of 
collision. The velocity of the new particle is chosen from a Maxwellian distribution 
characterized by the local ion temperature. This procedure is repeated until the particle 
is lost by ionization or escapes from the system. 

This simple method suffers from two main deficiencies. First, the sample particles 
are heavily attenuated by ionization in the outer region of the plasma; second, the 
zone volume decreases as particles penetrate toward the center of the plasma. Both 
effects reduce the number of particles which reach the center and increase the statistical 
error there. 

We circumvent the first problem by suppressing absorption. This simply means that 
at a collision a sample particle is never lost by ionization. Instead, we reduce its 
weight w by a factor hr./h,, where h, is the total mean free path and continue tracking 
after selecting a new velocity as described above. This procedure continues until the 
particle either escapes or its weight drops to some prescribed minimum value urnin. 
When w < wmin , we revert to the simple analog scheme outlined above until the 
particle is lost. 

2.4 Splitting and Russian Roulette 

To reduce the variance caused by decreasing zone size, we use a splitting scheme 
as follows. At some prescribed boundaries r = rs within the plasma we split a sample 
particle with weight w into v identical particles each with weight w/v, provided that 
the particle is moving inwards toward the center of the plasma. Alternatively, if the 
particle is moving radially outwards across one of the surfaces rS , then the particle 
is destroyed with probability (1 - l/v); if it survives, its weight is increased by a 
factor v. The splitting parameters v need not be an integer and may take different 
values on the surfaces rs . Thus, if n < v < n + 1, we choose n particles with proba- 
bility (n + 1 - v) and n + 1 particles with probability (v - n). 

It is shown in Ref. [4] that this procedure does not alter the basic Monte Carlo 
game of chance. Now, however, a particle moving toward the center is multiplied 
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and the new particles are placed in a list to be picked up later. When the original 
particle is lost, each new particle is taken in turn from the list until it is lost, at the 
same time, creating even more particles. When there are no more particles left in the 
list, another source particle is selected. By judicious choice of splitting surfaces, we 
can maintain a roughly constant particle flux across the plasma radius and therefore 
reduce the number of source particles. Generally, we choose v = 2 and space the 
splitting boundaries so that the flux falls by half between them. 

The combination of suppressing absorption and splitting with Russian roulette 
very effectively reduces the computer time required to calculate a set of neutral profiles. 
For example, the neutral package incorporated as part of the Princeton Plasma 
Physics Laboratory radial transport code BALDUR [5] typically employs 200 
particles with 20 zones; the CPU time required to calculate the neutral profiles 
for PLT parameters is ~15-20 set on a DEC-PDP 10 KI. 

2.5 Collision Cross Sections 

The calculations described here refer to H” atoms in a hydrogen plasma. We 
suppose that the ion temperature is sufficiently low that the dominant processes are 
charge-exchange and electron impact ionization of the neutral gas. The reaction rate, 
(CTV)~ , for the latter process is obtained from the polynomial fit given in Ref. [6]. 
Since (‘Ju)~ is independent of the neutral velocity, this quantity is tabulated for each 
zone. On the other hand, the charge-exchange reaction rate depends on the neutral 
velocity and is calculated for each particle. The charge-exchange cross section is 
calculated from a formula given by Riviere [7], viz., 

(7 - 0.6937 x IO-14[1 - 0.155 log10(&e1)]2 
cz - 1 + 0.112 x 10-14E3.3 rel 

13.~1 (eV) is computed from the root-mean-square velocities of the neutral atom and the 
background ions. The average speed of an ion with temperature T is fi = (8kT/7rm)li2. 
The relative velocity can be defined as z&r = vo2 + i$,,, where v,, is the velocity of 
the neutral atom. Thus, &r = mz&/2 = mv,2/2 + 4kT/rr. Then, (uv& can be 
defined as o&I.&r) Vrer . The exact form of I&r and Vrel is relatively unimportant 
since for E, , Ti < 20 keV, (~rv)~~ is almost independent of Erel. 

2.6 Surface Interaction 

Energetic particles incident on a solid can penetrate the surface and have some 
probability, dependent on their energy, of being backscattered having deposited part 
of their energy in the material. At the same time, if the particles are sufficiently ener- 
getic, they can sputter material from the surface. The data available for calculating 
surface interactions have been summarized by Behrisch [8]. 

To calculate the flux of backscattered particles, we require the particle reflection 
coefficient R(E) and the energy distribution I(E) de of reflected particles. For hydrogen 
atoms incident on stainless steel, this information is given in Ref. [8] in the form of 
histograms with broad energy ranges. Thus, in the Monte Carlo calculation, a particle 

581/28/1-4 
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with energy E’ which escapes from the system is reflected with its weight reduced by 
R(&) and a new energy E obtained by inverting the equation 

s ’ I(E) de = [ 
0 

where 5 is a random number in the range 0 < 5 < 1. The angle of reflection, 4, 
is chosen from a cosine distribution viz. cos # dR/27r where dsZ is the element of solid 
angle. 

To calculate the flux of sputtered material, the sputtering coefficients given in 
Ref. [8] are tabulated from the threshold energy (-70 eV for protons incident on 
stainless steel) to 20 keV. Although the dependence of the sputtering yield on the 
angle of incidence, 8, is not well known, it is suggested [8] that the normal incidence 
value should be increased by (cos 0)-f with 1 <f < 2; we have taken f = 1 with 
a cutoff at 80”. The sputtered flux is also assumed to have a cosine distribution. 

2.7 Neutral Source 

The external source of neutrals is an important consideration in this problem. We 
consider two models: 

(a) a monoenergetic, isotropic source; 
(b) neutralization and backscattering of outflowing protons. 

Model (a) is widely used in transport codes and could arise from dissociation of 
H,+ produced by ionization of H, from the walls. 

There is some experimental evidence that the limiter in a tokamak is an important 
source of neutral gas [lo]. In model (b) we suppose that a proton incident on the 
limiter is neutralized and reflected as a neutral. Thus, we select particles from a 
Maxwellian distribution at the edge ion temperature and, using the backscattering 
model described previously, we calculate a reflection probability R for each particle 
together with a reflection angle and energy. The particle is then launched with 
weight R. 

Note added in proof. The statistical weight of a particle launched from the edge representing a 
flux r should be (v/q,) x cos /I where v is the actual particle velocity, u0 is the average velocity of the 
distribution, and 0 is the angle from the normal direction. 

3. ILLUSTRATIVE CALCULATIONS 

The code requires as input the distributions of electron and ion density and tem- 
perature. We present some typical calculations assuming: 

?Z, = 7Zi = 5 X 10r3[1 - (r/a)“] cm-3, 
T, = 2 x 103[1 - (r/a)“] eV, 

Ti = 1 x 103[ 1 - (r/a)“] eV, 

with a plasma radius, a = 40 cm. In each calculation, the incoming flux of neutrals 
is normalized so that the external density is the same (lOlo cm-3). 
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Figure 2 shows the neutral density and energy distributions arising from a mono- 
energetic (3 eV) source of cold gas assuming (a) perfectly absorbing surfaces and (b) 
the backscattering model described in Section 2.6. The change in the density distri- 
bution when backscattering is taken into account is relatively small; for example, 
the central density has increased from 1.4 x 107 to 2.2 x 10’ cm-3. The change 
in the energy distribution within the plasma is insignificant. 

t r 

FIG. 2. Neutral density and energy distributions arising from a monoenergetic source (E = 3 eV). 

The small effect of backscattering neutrals is due to the rapid decrease of the particle 
reflection coefficient with increasing energy [8]. Figure 3 illustrates the energy distri- 
butions of the escaping neutral flux dr+/de and the reflected flux dr-/de. Thus while 
the distribution function of the escaping particles has a maximum at 6&80 eV 
(corresponding to the mean-ion energy -1 neutral mean free into the plasma) 
the distribution of reflected particles decreases rapidly from low energies; the ratio 
r-/r+ - 0.3. The net result is that the mean energy of neutrals crossing the plasma 
boundary is increased from 3 to 6 eV. 

Figure 4 shows the neutral profiles arising from the alternative boundary model (b) 
of Section 2.7. In this case we suppose that protons with temperature 30 eV are incident 
on the limiter and are reflected as neutrals; the mean energy of the reflected particles 
is 17.4 eV. Again, reflection of escaping neutrals has only a small effect on the density 
distribution. Also shown in Fig. 4 for comparison is the distribution arising from a 
17.4eV monoenergetic source. 
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FIG. 3. (top) Energy distribution of escaping neutrals. (bottom) Energy distribution of reflected 
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FIG. 4. Neutral density and energy distributions arising from a distributed source (E = 17.4 ev). 
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These results suggest that the high energies (SO-100 eV) of incoming neutrals some- 
times invoked in transport code calculations [9] are not justified unless the ion tem- 
temperature near the limiter is extraordinarily high ( 2 100 eV). 

3.1 Comparison with Diichs’ Code 

The Diichs-Rutherford 1D radial transport code [9] is used extensively for tokamak 
modeling. It is of some interest to compare the neutral treatment in that code with 
the present Monte Carlo model. 

The Diichs’ code includes an influx of cold gas at the plasma boundary together 
with 10 generations of hot neutrals produced in successive charge exchange collisions. 
At each charge-exchange event, the neutrals acquire the local-mean-ion energy but 
are constrained to move in the plane. Using the Monte Carlo code, we can simulate 
this model if, at each charge exchange collision, a neutral is given a new velocity 
corresponding to a mean-ion energy and its direction is chosen randomly in a disk; 
similarly when launching a particle its direction is confined to the plane. Figure 6 
shows that in this case we can accurately reproduce the neutral density profile cal- 
culated by the Diichs code. 

Also shown in Fig. 5 is the density distribution obtained if we remove the constraint 
of no axial motion and we select a new velocity at a collision from a Maxwellian 
distribution at the local ion temperature. In this case the density distribution decays 
more rapidly but the difference in this example is not large; for example, Dtichs’ 

10' I I I I 
0 8 16 24 32 40 
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FIG. 5. Comparison with Diichs’ model (-, Diichs’ code; I, Monte Carlo). 
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model overestimates the central neutral density by -60 %. This difference is simply 
due to the fact that, by constraining motion to the plane, path lengths are smaller 
and the attenuation is correspondingly reduced. 

The neutral energy distributions obtained from both codes are in close agreement. 
However, Table I shows a large discrepancy in the flux of sputtered material. In 
our model this flux is reduced by a factor -2 if we remove the (cosine)-l dependence 
of the sputtering yield (which is not included in the Diichs code); the remaining 
difference is due to the different sputtering coefficients used in the two codes (see Fig.6). 

TABLE 1 

Comparison of Particle Fluxes 

Diichs’ code 
Monte Carlo 

Neutral Impurity 
outflux influx 

(F, cm-8 see-‘) (r, cm-a see-l) rz1ro 
~____^ _. - ---.-~ 

6.24 x lo= 3.79 x 10’2 6 x 10m4 
4.67 x lO’6 1.24 x lOI 2.6 x 10m3 

(5.4 x 10’2) (1.15 x 10-3) 

D No angular dependence of sputtering coefficient. 

FIG. 6. Sputtering coefficients for H+ incident on stainless steel. (-, from Ref. [8]; - - -, values 
used in Diichs’ code). 

The limited number of charge-exchange collisions allowed by Dtichs’ model means 
that, as the plasma thickness is increased, the neutrals will be unable to sample the 
entire ion-temperature distribution. This is illustrated in Fig. 7, which compares the 
neutral profiles when the plasma radius is increased to 85 cm. The discrepancy in the 
density distribution is similar to that in the previous case. However, there is now a 
substantial difference in the enrgy distributions in the central region of the plasma. 
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FIG. 7. 
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Comparison with Dlichs’ model. (---, Diichs’ code; -, Monte Carlo). 

3 2 Charge- Exchange Spectra 

Measurements of the spectrum of charge-exchange neutrals is a widely used tech- 
nique for measuring the ion temperature in tokamaks. The detector signal corre- 
sponding to some neutral energy E is 

where the integral is evaluated along a chord to the detector and 

v=exp(-j,Z+j 

is an attenuation factor with h the total mean free path. Experimentally, it is assumed 
that if E is sufficiently high, then the corresponding signal is due to charge exchange 
reactions at the point, S, along the chord where Ti is largest. In that case, if 7 and oVcX 
are independent of E then a plot of ln[s(e)/@] as a function of E should be linear 
with a slope equal to - l/ 7’&). 

To examine the validity of this experimental procedure we could, in principle, count 
those escaping particles which reach the detector. In general, however, Monte Carlo 
methods are not efficient in generating differential spectra since the number of ulti- 
mate results required is large. Instead, having determined the neutral density and 
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average energy distributions within the plasma we integrate (3.20) directly. A typical 
spectrum calculated in this way for PLT parameters is shown in Fig. 8. We calculate 
an ion temperature from this spectrum from a least-squares fit between 5Ti to IOT, , 
where Ti is the expected temperature. The ion-temperature distribution obtained by 
integrating (3.20) over a number of chords is compared with the actual distribution 
in Fig. 9. In this example, the discrepancy is <5 %. If the temperature is measured 
from the slope between 2Ti and 4Ti, then the error is increaed to <25 %. 

-2ou 
0 2000 4000 6000 6000 10000 

ENERGY (eV) 

FIG. 8. Spectrum of charge exchange neutrals. 
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1500 
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FIG. 9. Comparison of actual and measured temperatures. 

4. SUMMARY 

The Monte Carlo algorithm described here is accurate and economic. It competes 
favorably in running time with other schemes (~15-30 seconds of PDP-IO KI CPU 
time per profile). In addition, it has the advantage of being extremely flexible. Such 
items as volume sources and arbitrary boundary conditions (reflection, absorption, 
etc.) can easily be added. It also can be modified to allow the straightforward inclusion 
of such effects as charge exchange between 0+ and H” and H+ and O”, and the cal- 
culation of mixtures of hydrogen such as D and T. 
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